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DOCUMENT SUMMARY 

 
This document summarizes the developments that are made in Task 3.6. 

Integration of most recent weather and wind turbine data for very short term 

forecasting (< 6h). The main outcome of this task is to develop machine learning 

and engineering algorithms to accurately perform short term forecasting and to 

detect wind ramps compared to solely relying on numerical weather forecasts 

(NWP) that do not assimilate operational WTG data and using solely operational 

WTG data and combination of both. 
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1   Introduction 
The most recent Numerical Weather Prediction (NWP) data cannot be directly applied to continuous wind 

power forecasting due to the inherent latency of 5-6 hours required for data delivery from the provider. 

Short-term wind power forecasting, which typically spans from a few minutes to several hours ahead, is 

crucial for addressing the challenges of wind energy integration into the power grid. This study aims to 

develop multiple AI-based models that incorporate real-time operational data from wind turbine 

generators (WTGs) to enhance power forecasting accuracy at the plant level. Additionally, each model’s 

ability to estimate wind ramp events, characterized by their magnitude and duration, will be assessed. 

1.1 Related work 
Wind power forecasting models usually include physical models, statistical models, AI/DL models, and 

hybrid models. This literature survey explores these methods, their evolution, and recent advancements 

in wind power forecasting and ramp detection. 

1.1.1 Physical Models 
Physical models are based on numerical weather prediction (NWP) techniques, utilizing the physics of the 

atmosphere to predict wind speed and power. These models rely on inputs such as wind speed, 

temperature, air pressure, and terrain topography to predict wind patterns and, subsequently, the output 

of wind turbines. Physical models, like those implemented in the Weather Research and Forecasting 

(WRF) model, are widely used for medium- to long-term forecasting. However, they are computationally 

intensive and often suffer from low accuracy in short-term forecasting due to the nonlinear nature of 

atmospheric conditions (Giebel et al., 2011). 

1.1.2 Statistical Methods 
Statistical methods focus on finding relationships between historical wind power output and wind speed 

data. Autoregressive (AR), autoregressive integrated moving average (ARIMA), and persistence models 

have been traditionally used to model wind power. ARIMA models, for instance, are employed to capture 

temporal dependencies in wind power data. These models perform reasonably well in short-term 

forecasting, but their accuracy decreases with longer time horizons (Costa et al., 2008). Furthermore, 

these models assume linearity, which limits their ability to capture the complex and nonlinear nature of 

wind power fluctuations (Wang et al., 2014). 

1.1.3 Machine Learning Approaches 
Machine learning methods have gained traction due to their ability to model complex nonlinear 

relationships in wind power data. Techniques such as artificial neural networks (ANNs), support vector 

machines (SVMs), and random forests have been applied to wind power forecasting with promising 

results. ANNs, particularly, have shown high accuracy in short-term forecasts as they can learn from large 

historical datasets and adjust to new conditions quickly (Mohandes et al., 2004). In recent years, more 

sophisticated deep learning models, such as long short-term memory (LSTM) networks and convolutional 

neural networks (CNNs), have further improved forecasting performance by capturing both temporal and 

spatial dependencies in wind data (Zhang et al., 2016). 

Recent advancements have introduced transformer-based architectures, which have demonstrated 

superior performance in wind power forecasting due to their ability to model long-range dependencies in 

time-series data more effectively than traditional recurrent models like LSTMs. Transformers, leveraging 

self-attention mechanisms, have been shown to outperform other methods by focusing on the most 
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relevant parts of the input sequences, thus providing better forecasting accuracy (Chen et al., 2021). 

Attention mechanisms have been particularly useful in multi-step forecasting scenarios, where they help 

to capture the dynamic relationships between different time steps more efficiently (Zhou et al., 2021). 

These approaches have revolutionized forecasting by reducing computation time and improving 

scalability over traditional methods like CNN-LSTM hybrids. 

1.1.4 Hybrid Models 
Hybrid models combine the strengths of different forecasting approaches to enhance prediction accuracy. 

For example, hybrid models often integrate physical and machine learning methods, where NWP forecasts 

are used as inputs for machine learning models to fine-tune predictions. These models have demonstrated 

improved performance compared to standalone physical or statistical models (Bessa et al., 2017). 

Additionally, some hybrid approaches incorporate ensemble learning techniques, where multiple models 

are combined to reduce uncertainty and increase forecast robustness (Li et al., 2010). 

CNN-LSTM hybrid models, which combine convolutional neural networks' ability to extract spatial 

features with LSTMs' temporal modelling capability, have shown superior accuracy in short-term wind 

power forecasting. By capturing both spatial correlations in wind farm data and temporal dependencies, 

CNN-LSTM models achieve higher accuracy and robustness, especially in volatile weather conditions (Liu 

et al., 2020). Further advancements in attention-based models have also led to the development of CNN-

LSTM-Attention architectures, where attention mechanisms are used to focus on important time steps, 

further enhancing forecasting performance (Yan et al., 2020). 

1.1.5 Recent Advancements and Trends 
Recent advancements in wind power forecasting have focused on enhancing the accuracy of short-term 

predictions, which are critical for grid operation and market participation. Techniques like transfer 

learning and domain adaptation have been proposed to improve model generalization across varying 

geographical regions (Liu et al., 2020). The growth of big data and high-performance computing has 

enabled the use of large datasets to train more complex models, leading to significant improvements in 

forecast performance. 

A notable development is the application of transformer-based architecture. These models leverage self-

attention mechanisms to effectively model global dependencies in wind data. Transformer-based models 

have been increasingly applied to time-series forecasting, including wind power, due to their ability to 

capture long-range dependencies more efficiently than traditional recurrent neural networks (RNNs) like 

LSTMs, which often struggle with handling long-term dependencies and require recursive computation 

(Chen et al., 2021). For instance, the Hierarchical Spatial-Temporal Transformer Network (HSTTN), 

proposed by Zhou et al. (2023), applies transformer architectures specifically for long-term wind power 

forecasting, demonstrating significant improvements in capturing both spatial and temporal 

dependencies at a global scale. 

Researchers are also exploring probabilistic forecasting, where uncertainty is explicitly modelled to 

provide grid operators with a range of possible outcomes, thereby enhancing risk management (Gönül & 

Sen, 2019). Probabilistic models are increasingly integrated with machine learning frameworks to improve 

the reliability and robustness of wind power forecasts. 

Another emerging trend is the hybridization of models. Recent studies have combined different deep 

learning architectures to improve both accuracy and computational efficiency. For example, a model that 
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integrates Conditional Generative Adversarial Networks (CGAN) with CNN-LSTM architectures has shown 

significant improvements in ultra-short-term forecasting accuracy. In this approach, CGAN handles 

missing data, while the CNN-LSTM extracts spatial and temporal features, followed by an attention 

mechanism to enhance convergence speed. This hybrid model has proven highly effective in real-world 

applications across multiple regions, outperforming standalone CNN-LSTM models (Zhao et al., 2023). 

1.1.6 Wind power ramp detection 
Wind power ramp detection has become an increasingly important area of research in the field of 

renewable energy. A wind power ramp is defined as a sudden variation in wind power output over a short 

period of time. The accurate detection and characterization of these ramps are crucial for grid stability, 

power balance, and efficient wind farm operation. 

Early approaches to ramp detection often relied on binary threshold-crossing methods. These methods 

typically defined a ramp based on a specific percentage change in power output over a given time frame 

(Bossavy et al., 2012). However, these approaches were found to be limited in their ability to capture the 

diverse range of ramp events that occur in real-world scenarios.  

To overcome the limitations of traditional methods, researchers have developed more sophisticated 

approaches: 

1. Wavelet Transform: Continuous Wavelet Transform (CWT) has emerged as a powerful tool for 

ramp detection (Cheneka et al., Hannesdóttir et al.,). This technique allows for the decomposition 

of wind power time series into time-frequency space, enabling the identification of ramps across 

various timescales and magnitudes. 

2. Optimized Algorithms: Zhang et al. developed an optimized swinging-door algorithm that allows 

for flexible adaptation of ramp definition parameters. 

2   Data  
Our dataset contains SCADA data from 1 Belgian offshore wind farm with 2 years of 10-minute SCADA 

data. We use Numerical Weather Prediction (NWP) forecasts for the corresponding periods for the 

identical locations. The NWP forecasts are derived from ECMWF IFS model. This data comprises computed 

forecasts of the wind speed, wind direction, temperature, specific pressure and air density at 1-h 

frequency.  

2.1 Data cleaning 
Historical SCADA data often contains measurements that are contaminated by faulty sensors, turbine 

downtime, or communication issues.  

Filtering for flatlines and extreme values–  

The dataset is refined by excluding turbine measurements that exhibit specific anomalies. Measurements 

are removed if the turbine of interest reports a negative wind speed or negative power production. 

Additionally, data points where the wind speed exceeds the turbine's cut-out speed or where power 

production is above 1% of the turbine's rated capacity are also excluded. This data cleaning step eliminates 

physically implausible or erroneous values, ensuring subsequent analysis is based on valid and realistic 

measurements only. Sensor value is stuck for 30 minutes or 6 consecutive 10-mintue timestamps 

(depending on the sensor), or more are also removed.    
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Filtering power curve outliers –  

Data points associated with curtailment periods were then eliminated from the dataset. An envelope 

filtering technique was applied to remove additional outlier datapoints, utilizing bounds defined based on 

the contractual power curve, as illustrated in Figure 2. The right bound is defined by the curve xrb =1.01 

xnom + 0.05 and yrb =0.99 ynom – 2.0 and the left bound is defined by the curve xlb =0.99 xnom - 0.05 and ylb = 

1.01 ynom + 2.0 where xnom and ynom represent the nominal values from the contractual power curve [2]. 

Following the automated filtering, the power curve was again manually inspected to ensure no outliers 

were overlooked. 

 

  

Figure 1: Power curve of a wind turbine, where blue points indicate clean datapoints retained for analysis, while red points 
represent measurements excluded from the dataset. 

2.2 Missing data imputation 
Missing data poses significant challenges to effective data analysis. Most data mining algorithms and 

techniques lack built-in mechanisms to directly handle missing values. This limitation is particularly 

problematic during the training phase, where the presence of missing data can substantially impact model 

performance and reliability. Consequently, appropriate handling of missing values is a crucial 

preprocessing step to ensure robust and accurate results in data mining applications. 

We design an algorithm to address missing data in wind turbine datasets, building upon the work of 

Morshedizadeh et al (2018). The method has been enhanced through the incorporation of iterative 

imputation techniques and random forest regression. 

1. Feature Enhancement: For each feature requiring imputation, the dataset is augmented with 

contextual information:  

• Site-wide daily statistics: Calculated mean and standard deviation of the feature across all 

turbines for each day. 

• Turbine-specific statistics: Computed mean and standard deviation of the feature for 

individual turbines. These additional features provide crucial context for the imputation 

process, capturing both overall site conditions and individual turbine characteristics. 
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2.  Model Development: A separate Random Forest Regressor model is developed for each feature 

with missing values:  

• Initial imputation: IterativeImputer with RandomForestRegressor is applied to handle any 

remaining NaN values in the training data.  

• Data normalization: StandardScaler is employed to normalize feature ranges.  

• Model training: A RandomForestRegressor is trained on the prepared data to predict the 

target feature.  

3. Imputation Implementation: The algorithm processes each row in the incomplete dataset 

sequentially:  

• For each missing value, input data is prepared using the same methodology as in the training 

process (feature enhancement, initial imputation, and scaling). 

• The corresponding trained model is then utilized to predict the missing value. 

• If more than 3 hours of data is continuously missing, no data imputation is done. 

The cleaned farm power curve used for training of AI models is shown in Figure 2.  

 

Figure 2: Farm power curve used to train AI models 

3   Development of forecast models and ramp detection method 

Various approaches are tested for predicting wind power at the park level, ranging from simple baseline 
models to sophisticated deep learning architectures. These approaches can be categorized into three 
main groups: 

1. Single-source models:  

• Baseline models using only NWP forecast data with power curve conversion 

• ARIMA models utilizing only SCADA historical data 

• Classical machine learning models trained on NWP forecast data 

2. Deep learning architectures:  

• Advanced neural networks designed to naturally combine both NWP and SCADA data 

• Architectures including LSTM, CNN-LSTM, CNN-LSTM with Attention, and Transformers 
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The flowchart in Figure 3 illustrates a comprehensive process for developing and evaluating wind power 

prediction models using deep learning techniques and ramp detection. The process begins by combining 

SCADA (operational) data with numerical weather prediction (NWP) forecasts. This merged dataset 

undergoes cleaning and is then split into training/validation and test sets, both of which are normalized. 

The training set is used to develop and validate various deep learning models, including stacked LSTM, 

CNN-LSTM, CNN LSTM with Attention, and Transformers. Meanwhile, the test set is fed into the developed 

wind power prediction models. The models' performance is then evaluated using several metrics: Mean 

Absolute Error (MAE), Root Mean Square Error (RMSE), Mean Squared Error (MSE), and R-squared (R2). 

The model predictions are then used to detect wind power ramps.  

 

Figure 3: Workflow for wind power forecasting and ramp detection combining NWP forecast and SCADA data. 

3.1 Combining NWP and SCADA data  
The following variables are used to predict next 12-hour wind farm power production –  
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• SCADA – wind speed, active power 

• NWP (IFS forecast) – air density, temperature (2m), wind speed (100m), wind direction (100m) 

To optimize data fusion, we adjusted the time resolutions of our two data sources: the ECMWF IFS 

forecast (originally 1-hour intervals) and SCADA measurements (originally 10-minute intervals). We 

standardized both to 30-minute intervals, downsampling the higher-resolution SCADA data and 

upsampling the IFS forecast data. This approach maximizes the number of usable SCADA measurements 

while maintaining consistent time intervals for analysis. 

 

Figure 4: Summary of time windows used for wind power prediction. Adapted from Bouche, D et al (2023) 

Dataset building – The formulation of the dataset for input into the ML models are adapted from the work 

of Bouche D et al., 2023 as show in Figure 4.  

Consider a forecast that predicts m future values of wind speed or wind power, where m is 11 hours ahead 

in our case. While we naturally include the corresponding ECMWF forecast variables for this period, 

Bouche D et al., 2023 found that incorporating additional data points improved performance. Specifically: 

• r0: represents how many past ECMWF predictions we include 

• r1: represents how many additional future ECMWF predictions we include beyond the m 

prediction points 

• l: represents how many past SCADA observations we include 

 

The following values are used in this case: m=22, l=8, r0=2, r1=2. With data being sampled at 30-minute 

intervals, 11 hours of potential future wind power is predicted. 

As shown in Figure 4, we combine all relevant observations (xt) from these time windows (marked in 

orange). The model then uses this input to predict yt+1:m, which represents m future values (shown in the 

green zone). 
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3.2 Data driven forecast models 
The following models are developed to assess their performance in predicting wind power using NWP 

forecasts and SCADA data.  

Baseline model (Wind speed – power curve model) – The baseline model uses a simple power curve, 

provided by the turbine manufacturer, to convert raw weather forecast data into predicted wind power 

output. For any given time, it takes the forecasted wind speed and calculates how much power the turbine 

should generate, without applying any additional corrections. For the baseline model, SCADA data is not 

used. 

ARIMA (AutoRegressive Integrated Moving Average) is a statistical model for analyzing and forecasting 

time series data that combines three components: AutoRegression (AR) which uses past values to predict 

future ones, Integration (I) which differences the data to make it stationary and Moving Average (MA) 

which incorporates past forecast errors into the model. ARIMA is particularly effective for linear, 

univariate time series forecasting when the data can be made stationary through differencing, though it 

has limitations with non-linear patterns and multiple variables. In our case, the only input to ARIMA is 

total power generated by the wind farm for the given time t.  

Classical ML models – Multiple classical ML models such as Random Forest regression, kNN regressor, 

gradient boosting, and so on is experimented with to predict wind power using just IFS forecast as input. 

This is done using PyCaret python library. No SCADA data is used in this model as classical ML models do 

not handle multi horizon forecasting naturally. Traditional ML models are often designed to make single-

step predictions rather than forecasting multiple future steps simultaneously. This makes them less 

suitable for true multi-horizon forecasting. 

We also explore some modern deep learning architectures which are designed for long term multi-horizon 

forecasting which can also help combine both NWP forecasts and SCADA more naturally. The following 

architectures are explored -  

Long Short-Term Memory (LSTM) networks are a type of recurrent neural network specifically designed 

to handle long-term dependencies in sequential data. They use a gating mechanism consisting of input, 

forget, and output gates that control information flow through the cell state. This architecture allows the 

network to selectively remember or forget information over long sequences, making them particularly 

effective for tasks like time series prediction. 

CNN-LSTM combines the spatial feature extraction capabilities of Convolutional Neural Networks (CNN) 

with the temporal modeling of LSTMs. In this architecture, the CNN first processes input data to extract 

relevant spatial features, which are then fed into an LSTM layer for temporal processing. This combination 

is particularly powerful for tasks that require both spatial and temporal understanding. 

CNN-LSTM with Attention adds an attention mechanism on top of the CNN-LSTM architecture to help the 

model focus on the most relevant parts of the input sequence when making predictions. The attention 

layer computes importance weights for different parts of the input sequence, allowing the model to 

dynamically focus on relevant features at each time step. This addition is particularly useful for complex 

sequence modeling tasks where different parts of the input sequence have varying levels of importance 

for the final prediction, such as in time series forecasting with multiple variables. 
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Temporal Fusion Transformers (TFT) (Lim, B et al. 2021) represent a more modern architecture 

specifically designed for multi-horizon forecasting with multiple variables. TFTs incorporate several 

innovative components: variable selection networks to determine relevant inputs, gating mechanisms to 

suppress irrelevant components, and a temporal attention layer that can learn complex temporal 

relationships across different time steps. Unlike simpler architectures, TFTs can handle static covariates, 

known future inputs, and unknown future inputs separately, making them particularly effective for real-

world forecasting problems where different types of information are available at different times.  TFTs 

are also interpretable. 

3.3 Forecast evaluation metrics 
The following forecast evaluation metrics are used to assess the model performance – Mean Absolute 

Error (MAE), Root Mean Squared Error (RMSE) and R-squared (R²).  

Mean Absolute Error (MAE) - MAE measures the average magnitude of errors in a forecast, without 

considering their direction. It is calculated as the average of the absolute differences between the 

predicted values and the actual values. 

Root Mean Square Error (RMSE) - RMSE is the square root of the average of squared differences between 

predicted and actual values.  

R-squared (R²) - R² measures the proportion of variance in the dependent variable that is predictable from 

the independent variable(s) 

Multi-horizon metrics (RMSE, MAE, R²) are calculated by comparing predicted and actual values at each 

forecast horizon across all timestamps in the dataset. For a 6-hour forecast, all 1-hour-ahead predictions 

are compared with their corresponding actuals in horizon 1, all 2-hour-ahead predictions are compared 

in horizon 2, and so on up to horizon 6. Each horizon's metrics are calculated independently - so horizon 

1 RMSE represents the root mean square error of all 1-hour-ahead predictions, horizon 2 RMSE for all 2-

hour-ahead predictions, etc. The overall metrics (like overall RMSE) are calculated by pooling all errors 

across all horizons together, effectively treating each horizon's prediction-actual pair as an independent 

observation. This approach allows to evaluate how forecast accuracy degrades (or maintains) across 

different prediction horizons while still getting a comprehensive view of the model's overall performance 

through the pooled metrics. 

3.4 Power ramp detection algorithm 

The methodology to detect power ramps consists of three main steps, and is a slightly modified version 
of Hannesdóttir et al., 2019. 

First, the power data is normalized by its mean and standard deviation to ensure consistent analysis across 
different scales. Then, a continuous wavelet transforms (CWT) using a Gaussian wavelet is applied to the 
normalized data, with the wavelet coefficients normalized by the square root of their respective scales. 
The averaged power of the wavelet coefficients is analysed to identify significant peaks that exceed a 
prominence threshold of 0.1, with a minimum separation of 2-time steps between peaks. Prominence 
measures how much a peak stands out relative to its surrounding values. 
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For each identified peak, the method fits an idealized ramp function based on the error function, erf to a 
window of data cantered on the peak. The window size is proportional to the dominant wavelet scale at 
that peak. The ramp function characterizes the transition between two power levels with parameters for 
timing and transition speed. For multiple qualifying ramps, the one with the largest percentage change is 
selected as the best ramp event, with its magnitude, duration, rate of change, and timing recorded. 

4   Evaluation of the models 
The performance of forecast models and their capability to detect ramp events is detailed in this section. 

4.1 Forecast performances of different models 
The analysis of multiple time series prediction models for power forecasting reveals significant differences 

in performance across various prediction horizons. Through examination of multiple performance metrics 

(Table 1) including Root Mean Square Error (RMSE), Mean Absolute Error (MAE), R² score, and time-

horizon specific performance (Figure 5), and visual time series data for select few days (Figure 6), we can 

draw several conclusions about model effectiveness and reliability. 

 

Table 1: Values of evaluation metrics for 6 months of test data for 12 hour forecast horizon. 

 RMSE [kW] MAE [kW] R2 score 

LSTM 678.1  429.17 0.77 

CNN-LSTM 596.97 380.82 0.82 

CNN-LSTM-Attention 591.44 374.05 0.83 

TFT 564.72 354.88 0.85 

 

The Temporal Fusion Transformer (TFT) emerges as the best model across all performance metrics. With 

the lowest RMSE of 564.72 kW, lowest MAE of 354.88 kW, and highest R² score of 0.85, TFT demonstrates 

Figure 5: Normalized MAE vs forecast horizon. TFT shows the lowest and most consistent MAE over 10+ hour horizon. 
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superior prediction accuracy. With consistently low Mean Absolute Error (MAE) of about 5-6% across all 

prediction horizons, TFT exhibits impressive resilience even as other models begin to decline.  

The CNN-LSTM and CNN-LSTM-Attention models demonstrate similar performance, achieving nMAE 

values around 7-8% and remaining relatively stable across different prediction horizons, though they lack 

the same level of consistency as TFT. The standard LSTM model falls slightly behind its CNN-enhanced 

variants, displaying greater prediction variance and a gradual performance drop over longer horizons. 

CNNs, known for detecting local patterns and sudden changes in data (Lin et al., 2017), excel due to sliding 

window operations (convolutions) that effectively capture abrupt shifts or features in the input, making 

them more responsive to immediate changes in the time series compared to LSTMs. 

Traditional statistical and ML approaches, including the KNN Regressor, IFS Wind speed-power curve 

model, and ARIMA model, demonstrate the limitations of conventional methods in this complex 

prediction task. While the KNN Regressor maintains moderate but consistent performance, the ARIMA 

model has error increases over longer prediction horizons. This performance gap highlights the 

advantages of modern deep learning approaches in handling the complicated prediction tasks. 

The impact of prediction horizon length on model performance is particularly revealing. While all models 

show some degree of error increase as the prediction horizon extends, the rate and severity of this 

degradation vary significantly. Traditional statistical models, especially ARIMA, exhibit performance 

deterioration over longer horizons, with their confidence intervals widening substantially. In contrast, 

deep learning models, particularly the TFT, maintain stable performance even at extended horizons of 

10+ hours. 

For practical implementation, these results strongly suggest adopting the TFT as the primary prediction 

model, with CNN-LSTM variants potentially serving as backup systems.  

The uncertainty analysis reveals that TFT maintains the narrowest confidence band among all models, 

indicating highly consistent predictions. This contrasts sharply with the ARIMA model's wide confidence 

intervals, which suggest high prediction uncertainty. The neural network-based models generally show 

moderate confidence bands, positioning them between these extremes. 
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Figure 6: Normalized power prediction of different models for selected run datetimes. 

 

4.2 Best model (TFT) interpretation 
Our analysis confirmed that the Temporal Fusion Transformer (TFT) outperformed other models in 

prediction accuracy. To better understand its effectiveness, the model's interpretability is now examined, 

with the input features that most strongly influence its predictions being specifically analyzed. 
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Figure 7: Feature importance (left) and temporal attention (right) of different input variables for TFT model. 

In Figure 7, the encoder section (past data), SCADA wind speed emerges as the dominant predictor, 

contributing about 35% to the model's decisions. Temperature at 2m height and wind speed at 100m form 

the second tier of importance, each accounting for roughly 15% of the model's attention. Active power 

data is not shown in the feature importance as TFT model works in such a way that previous values of the 

predictor variable is always considered.  

The decoder variables (future data) show a different priority pattern. Here, IFS forecast wind speed at 

100m height has approximately 45% importance. Wind direction forecast seems to be less important to 

predict wind power in case of TFTs. This should further be validated with more datasets. 

Temporal attention pattern shows stabilization of the attention weights across all available timestamps 

with the variation between 0.123 to 0.128. This U-shaped distribution suggests the model places slightly 

more emphasis on both the most recent and oldest timestamps in its prediction window, though the 

difference is minimal. 

The overall stability in attention weights indicates that the model considers all historical timesteps to be 

similarly valuable for prediction, rather than heavily favouring specific time points. This balanced 

approach to temporal information processing likely contributes to the model's robust performance. 

4.3 Ramp detection  
There is no accepted definition or classification of wind power ramps except that they are manifested in 

terms of a significant change in production over a relatively short time. The quantification of the duration 

and magnitude of wind power ramps are arbitrary. Hence, we explore many different conditions for power 

ramps based on change in percentage of magnitude with respect to the rated power of the wind farm and 

with different durations.  

The algorithm matches actual and predicted ramps by comparing three key characteristics: timing, 

magnitude, and direction. For each actual ramp, it searches through predicted ramps and considers them 



ETF BeFORECAST Deliverable Report  Page 18 of 21 

a match if they meet all three criteria: (1) the time difference between the centers of the ramps (calculated 

as the midpoint between start and end times) is within a specified time threshold (1-hour here), (2) the 

difference in percentage change between the ramps falls within a defined percentage threshold (15% 

here), and (3) both ramps share the same direction (increasing or decreasing). Once a match is found, that 

predicted ramp is marked as processed to prevent double-matching, and the pair is recorded as a true 

positive. Any actual ramps without matches are counted as false negatives, while unmatched predicted 

ramps are counted as false positives. 

The contingency table for different ramp magnitudes and durations is shown in Figure 8. This is adapted 

from beforecast-verification package developed in T5.1. 

The evaluation metrics of the contingency table -  

Hits: Correctly predicted ramp events. These are cases where the model successfully detects a ramp-up 

event within the threshold and time constraints. 

Misses: Ramp events that were missed by the model, indicating that the model failed to identify an actual 

event. 

False Alarms: Instances where the model predicted a ramp-up event, but no such event occurred. This 

reflects the model's tendency to incorrectly signal a ramp. 

Correct Negatives: Cases where the model correctly identifies the absence of a ramp, representing the 

accuracy in predicting no event. 

The contingency plot compares four models - LSTM, CNN-LSTM, CNN-LSTM-Attn, and TFT - across 

different thresholds of magnitude (25%, 50%, 75%, 80%) and time windows (≤1 hour and ≤3 hours). The 

plot represents hits, misses, false alarms, and correct negatives. The TFT (Temporal Fusion Transformer) 

model shows slightly better consistency across different thresholds, particularly in reducing false alarms 

while maintaining good hit rates. The CNN-LSTM with attention mechanism demonstrates comparable 

performance to the base CNN-LSTM, suggesting that the addition of attention may not significantly 

improve ramp detection in this case. The basic LSTM model, while competent, shows slightly more 

variability in its performance metrics.  
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Figure 8: Contingency table for different ramp condition and power prediction models. 

5   Conclusion 
A detailed evaluation of various models for wind power forecasting was conducted, combining Numerical 

Weather Prediction (NWP) data and SCADA measurements. Among the tested models, which included 

traditional methods like ARIMA and advanced deep learning architectures, the Temporal Fusion 

Transformer (TFT) stood out, achieving the lowest RMSE of 564.72 kW and the highest R² score of 0.85. 

The TFT excelled due to its ability to process multiple input variables effectively and deliver consistent 

performance across different prediction horizons, maintaining a stable normalized MAE of 5–6%, even for 

predictions beyond 10 hours. 

An analysis of the feature importance of the TFT model revealed that SCADA wind speed data accounted 

for 35% of the importance in historical inputs, while NWP wind speed forecasts at 100m height 

contributed 45% to future predictions. The model also demonstrated strong ramp detection capabilities 

across various magnitude thresholds and time windows, outperforming other architectures in reducing 

false alarms while maintaining high hit rates. 

These findings highlight the significant advantages of modern deep learning approaches, especially 

transformer-based architectures, over traditional statistical methods for accurate wind power forecasting 

and reliable ramp detection. 

In the next steps, more validation on different farms needs to be carried out with different NWP model 

data. 



ETF BeFORECAST Deliverable Report  Page 20 of 21 

6   References 
Bessa, R.J., Miranda, V., Botterud, A., Wang, J., & Konstantelos, I. (2017). Time adaptive conditional kernel 

density estimation for wind power forecasting. IEEE Transactions on Sustainable Energy, 8(3), 1220-1229. 

doi:10.1109/TSTE.2016.2646142 

Bossavy, A., Girard, R., & Kariniotakis, G. (2012). Forecasting ramps of wind power production with 

numerical weather prediction ensembles. Wind Energy, 16(1), 51-63. doi:10.1002/we.526 

Bouche, D., et al. (2023). Wind power predictions from nowcasts to 4-hour forecasts: A learning approach 

with variable selection. Renewable Energy, 211, 938-947. 

Chen, J., Wan, C., & Xu, Z. (2021). Wind power forecasting using transformer neural networks: Model 

comparison and case study. Renewable Energy, 174, 734-749. doi:10.1016/j.renene.2021.04.098 

Cheneka, B.R., Watson, S.J., & Basu, S. (2020). A simple methodology to detect and quantify wind power 

ramps. Wind Energy Science, 5(4), 1731-1741. 

Costa, A., Crespo, A., Navarro, J., Lizcano, G., Madsen, H., & Feitosa, E. (2008). A review on the young 

history of the wind power short-term prediction. Renewable and Sustainable Energy Reviews, 12(6), 1725-

1744. doi:10.1016/j.rser.2007.01.015 

Doekemeijer, B., Simley, E., & Fleming, P. (2022). Comparison of the Gaussian Wind Farm Model with 

Historical Data of Three Offshore Wind Farms. Energies, 15, 1964. doi:10.3390/en15061964 

Giebel, G., Brownsword, R., Kariniotakis, G., Denhard, M., & Draxl, C. (2011). The state-of-the-art in short-

term prediction of wind power: A literature overview. Wind Energy, 14(8), 829-846. doi:10.1002/we.458 

Hannesdóttir, Á., & Kelly, M. (2019). Detection and characterization of extreme wind speed ramps. Wind 

Energy Science, 4(3), 385-396. 

Li, G., Shi, J., & Qu, X. (2010). Probabilistic forecasting of wind power generation using extreme learning 

machine. Energy Conversion and Management, 50(4), 1090-1099. doi:10.1016/j.enconman.2010.02.023 

Lim, B., Arık, S.Ö., Loeff, N., & Pfister, T. (2021). Temporal Fusion Transformers for interpretable multi-

horizon time series forecasting. International Journal of Forecasting, 37(4), 1748-1764. 

doi:10.1016/j.ijforecast.2021.03.012 

Lin, L., Yang, C., & Zhang, Y. (2022). Deep learning-based wind power forecasting: A transformer approach. 

Frontiers in Energy Research. 

Lin, T., Guo, T., & Aberer, K. (2017). Hybrid Neural Networks for Learning the Trend in Time Series. 

Proceedings of IJCAI, 2273-2279. 

Liu, H., Tian, H.Q., Pan, D., & Li, Y.F. (2015). Forecasting models for wind speed using wavelet, wavelet 

packet, time series and artificial neural networks. Applied Energy, 156, 203-219. 

doi:10.1016/j.apenergy.2015.07.023 

 



ETF BeFORECAST Deliverable Report  Page 21 of 21 

Liu, Y., Wang, D., Zhang, X., & Ding, H. (2020). A hybrid model of convolutional neural networks and long 

short-term memory network for wind power forecasting. Energy, 201, 117598. 

doi:10.1016/j.energy.2020.117598 

Messner, J.W., Pinson, P., Browell, J., Bjerregård, M.B., & Schicker, I. (2020). Evaluation of wind power 

forecasts—An up-to-date view. Wind Energy, 23, 1461-1481. doi:10.1002/we.2497 

Mohandes, M., Rehman, S., & Halawani, T.O. (2004). A neural networks approach for wind speed 

prediction. Renewable Energy, 13(3), 345-354. doi:10.1016/j.renene.2004.01.011 

Morshedizadeh, M., Kordestani, M., Carriveau, R., Ting, D.S.K., & Saif, M. (2018). Power production 

prediction of wind turbines using a fusion of MLP and ANFIS networks. IET Renewable Power Generation, 

12(9), 1025-1033. 

Wang, J., Zhu, J., Zhang, B., & Li, Z. (2014). A new hybrid wind speed forecasting method based on self-

organizing maps, wavelet analysis, and ARIMA model. Energy Conversion and Management, 84, 109-119. 

doi:10.1016/j.enconman.2014.04.061 

Zhang, Y., Wang, J., Wang, X., & Li, J. (2016). Short-term wind power prediction based on LSTM and CNN. 

Neurocomputing, 277, 317-325. doi:10.1016/j.neucom.2017.02.042 

Zhao, Z., Yan, J., & Cheng, P. (2023). Ultra-Short-Term Wind Power Forecasting Based on CGAN-CNN-LSTM 

Model Supported by Lidar. Sensors, 23(9), 4369. doi:10.3390/s23094369 

Zhou, Y., Wang, J., Zhang, G., & Ma, J. (2021). Short-term wind power prediction based on attention 

mechanism and encoder-decoder structure. Energy, 231, 120946. doi:10.1016/j.energy.2021.120946 

Zhou, Y., Wang, J., Zhang, G., & Ma, J. (2023). Hierarchical Spatial-Temporal Transformer Network for long-

term wind power forecasting. arXiv Preprint, 2305.18724. 

  


