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1 Introduction 
The current document describes the research efforts on the microscale data assimilation performed 
within the BeFORECAST project in the context of Tasks 3.2 and 3.5: “Extending LES-based reconstruction 
methodology for wind turbine wakes based on weakly constrained 4DVar” and “Development of 
operational data-assimilation based on TFT hypothesis and wake models”.  

Data assimilation (DA) enhances state estimation by integrating available measurements with information 
from various sources within a Bayesian inference framework. This process can be applied at different 
scales (e.g., macroscale, microscale, etc.). Tasks 3.3 and 3.5 focus on microscale data assimilation, since 
analyzing small-scale phenomena is crucial for optimizing power output in wind farms. Our goal is to 
develop a practical framework for reconstructing these small scales within wind farms and the 
surrounding atmospheric boundary layer (ABL) flow. To this end, we rely on a large-eddy simulation (LES) 
model to simulate the flow to build a 4D-Var DA framework.  In Bauweraerts & Meyers (2020), a strongly 
constrained 4D-Var method was used leading to an LES optimization problem. Here, we aim to improve 
on this method, by developing a weakly constrained 4D-Var method, in which we characterize subgrid-
scale model error using approximations based on a spectral-tensor for boundary-layer turbulence.  

In Task 3.5, the original goal was to develop data-assimilation methods using fast dynamic models that 
can be used in an operational setting. In this task, the aim was to use the 4D-Var approach in combination 
with a simple Taylor Frozen Turbulence (TFT) model for the background flow.  However, due to recent 
scientific insights, this task was slightly redefined as will be further elaborated below.  

The current report is structured as follows. In section (2), the scientific results related to Task 3.3 are 
briefly introduced. This is followed then by a discussion of Task 3.5 in section (3). Finally, the report is 
concluded with an overview dissemination related to the current deliverable.   

2 T3.3: Extending LES-based reconstruction methodology for wind 
turbine wakes based on weakly constrained 4D-Var  

In this work, we start from the strong 4D-Var method of Bauweraerts and Meyers (2020), with the goal to 
develop a practical weakly constrained 4D-Var algorithm that incorporates the model error associated 
with sub-grid scales in the LES model. We achieve this in two stages. In the first stage, we address the 
computational challenges in the work of Bauweraerts and Meyers (2020) associated with the expensive 
prior statistics, which form a significant bottleneck and render the algorithm impractical. In the second 
stage, we extend the model developed in the first stage to account for model errors arising from 
unresolved scales in the LES framework, further improving the accuracy and robustness of the algorithm, 
especially for long time horizons where the accumulated model error plays a dominant role. In the 
following, these two steps are elaborated.  

2.1 Practical strong 4D-Var method for ABL flow reconstruction 
We propose an efficient method to reconstruct the turbulent flow field in a neutrally stratified 
atmospheric boundary layer using LES and a series of lidar measurements. The reconstruction is 
formulated as a strong four-dimensional variational data assimilation problem, which involves optimizing 
two competing terms that contribute in the objective functional. The first term is a likelihood term, while 
the second contains the prior statistics of the initial velocity fluctuations and works as a regularization 
term. Typically, these priors are computed offline by averaging over a long historical LES simulation. While 
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the resulting statistics are typically accurate and representative for the flow under consideration, they 
require prohibitively expensive prior simulations. Although this forms a bottleneck in any practical 
application, it remains valuable for benchmarking purposes (see figure 1). In this subtask, we substitute 
the numerically obtained statistics with analytical approximations based on turbulence theory, aiming to 
reduce computational complexity while preserving key physical characteristics. To this end, we implement 
two models: the Hunt–Graham–Wilson (HGW) model and the Mann model. 

The HGW model is a fully analytical spectral model that was introduced long ago by Hunt & Graham (1978) 
in the context of studying the effect of introducing a moving rigid surface suddenly at time 𝑡𝑡 = 0 to a free-
shear flow. Later, Wilson (1997) used these ideas to derive an analytical model for the vertically 
inhomogeneous spectral tensor in the atmospheric convective boundary layer. Herein, we further exploit 
this approximated model to provide a fast and physical-based regularization of our 4D-Var problem. The 
HGW model is fully isotropic. However, it captures the wall effect, and therefore, it is inhomogeneous 
only in the vertical direction. Figure (2-a) illustrates the two-point correlation function obtained using the 
HGW model at 𝑧𝑧 = 100 𝑚𝑚, which is the lidar elevation in our experiment. The Mann model, on the other 
hand, is another analytical model that was proposed by Mann (1994) in the context of studying ABL 
statistics. Unlike the HGW model, the Mann model is anisotropic and homogeneous. That is, the model is 
able to capture inclinations in the correlation function due to the mean shear. Figure (2-b) shows the 
obtained correlation function for the streamwise velocity component, where the inclination in the vertical 
direction can be observed. While the analytical models above do not exactly lead to the numerically 
obtained statistics Bauweraerts and Meyers (2020) in figure (1), it remains useful as will be shown below. 

Figure (3) shows a comparison between the reconstructed turbulent fields using the analytical models 
above verse the reference fine simulation, from which the virtual lidar measurements were collected. As 
seen from the figure, employing either of the two models above leads to accurate reconstruction inside 
the lidar area. However, the Mann model exclusively shows the ability to capture the inclination of the 
large vertical structures in the vertical direction due to its anisotropic nature. The accuracy of the 
reconstruction is further assessed by considering the relative error defined inside the scanning area. 
Figure (4) shows that our analytically regularized strong 4D-Var method provides very good reconstruction 
accuracy, while maintaining a cost-effective algorithm. This work was published in the Journal of Fluid 
Mechanics (see desimination below).   

 

Figure 1: Two-point correlation function for the streamwise velocity component at the lidar height. The black lobes represent 
positive correlations, while the red ones correspond to negative correlation. These results were obtained by Bauweraerts and 

Meyers (2020) using long historical LES simulations. 
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Figure 3:  The streamwise velocity fluctuation component at the 𝑥𝑥2 = 0 (a–f) and 𝑥𝑥3 = 0.1𝐻𝐻 (g–l) planes. The right column is the 
reference velocity and the left two columns are the reconstructed velocities using the HGW model and the Mann model, 

respectively. 

Figure 2: The two-point correlation function similar to figure 1, as obtained using the HGW model (left), and the Mann model 
(right). 
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Figure 4: The normalized spatially averaged error inside the scanning area for the ridge, HGW and Mann models and the POD-
based regularization in Bauweraerts & Meyers (2020). Panel (a) shows the errors at  𝑡𝑡 = 0.05𝑢𝑢∗/𝐻𝐻 , while (b) shows the results 

at  𝑥𝑥3 = 0.1𝐻𝐻. 

2.2 Weakly constrained 4D-Var algorithm using LES  
Here, we consider the second step of our methodology, which involves extending the algorithm in the 
previous section to address the model error associated with the SGS term in the LES equation. Unlike the 
more common strong formulation, the weak version is usually avoided in practice since it requires 
considering the state equation as a weak constraint to the optimization problem, resulting in a space-time 
control vector (instead of space only in the strong version).  However, it is also expected to give better 
reconstruction accuracy since it allows for more degrees of freedom in addition to the initial state as 
before. In the following, we start from the algorithm presented in the previous section and replace the 
SGS term in the LES with a space-time forcing term. Afterwards, we employ insights from the turbulence 
theory to describe the statistics of this forcing term. In the case of the ABL flows as considered here, the 
latter (2nd order) statistics can easily reach a size of 108. This leads to a massive two-point-two-time 
correlation tensor that is impossible to handle or model with the current resources. To proceed, we 
assumed that the model error in hand is decorrelated in time and focus on providing the correlation in 
space only. We investigated two different options for the space correlation, namely, the HGW model from 
above, and another isotropic model that features a spectral behavior ~𝑘𝑘2.  

Thanks to the efficient parallelization in our LES solver, and the time decorrelation assumption, the weak 
formulation is efficiently solved after proper scaling and preconditioning. Figure (5) shows the updated 
error plot after adding the weak formulation results. As seen from the figure, the weak reconstruction 
consistently outperforms the strong version presented in the previous section. The 𝑘𝑘2 model shows 40% 
improvement in the reconstruction accuracy at the beginning of the window, and 12% and the middle 
using the 𝑘𝑘2 model. This result is very close to the results of Bauweraerts, P., & Meyers, J. (2020). 
However, the results here are achieved using much less computational resources.  

The work presented in this section was documented in a jouranl article that will be submitted to the 
Journal of Computational Physics. 
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Figure 5: The normalized spatially-averaged error inside the scanning area for the strong HGW in in figure (4), HGW (weak), k2 
(weak), and the POD case in Bauweraerts and Meyers (2020). The left figure shows the errors at t = 0.05u∗/H, while the right 

figure shows the results at x3 = 0.1H. 

 

3 T3.5: Development of operational data-assimilation based on TFT 
hypothesis and wake models 

In this task, the original goal was to develop data-assimilation methods including fast dynamic models 
that can be used in an operational setting. These models include the simple Taylor Frozen Turbulence 
(TFT) model alongside a dynamic extension of the static wake model by Lanzilao & Meyers (2020). The 
investigation of using coarse LES in such practical setup was also planned.  

In Year 1 of the project, we focused on replacing the LES model in our 4D-Var algorithm with the TFT 
simplification, enabling a faster reconstruction process. Additionally, static wake models were successfully 
applied as a background for 4D-Var wind farm reconstructions (see figure (6)). These results were 
published in Journal of Physics: Conference Series (see below). Concurrently, the use of coarse-grid LES 
was also explored at KU Leuven, with a potential goal of replacing the 'heuristic engineering wake models’. 
This revealed that using coarse grid LES in an MPC framework for wind farm control could lead to a faster 
than real-time algorithm, which can effectively control wind farm power in real time. These results were 
published in Wind Energy Science (Janssens & Meyers, 2024, https://doi.org/10.5194/wes-9-65-2024).  
Therefore, we believe that coarse grid LES models may be integrated in an operational wind-farm setting 
as an alternative for more heuristic dynamic engineering wake models.  

 

 

 

 

Figure 6: Example of employing wake models (right), to regularize 4D-Var problem (left), involving wind farms.  

https://doi.org/10.5194/wes-9-65-2024
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4 Dissemination  
 

The work above was published/presented in several occasions as follows:  

 Articles 
 
o Alreweny, A., Vandewalle, S., & Meyers, J. (2024). Large-eddy simulation-based reconstruction of 

turbulence in a neutral boundary layer using spectral-tensor regularization. Journal of Fluid 
Mechanics, 981, A28. doi:10.1017/jfm.2024.92 
 

o Alreweny, A., Vandewalle, S. & Meyers, J. (2024). Turbulent flow field reconstruction in wind 
farms using power measurements. Journal of Physics: Conference Series 2767 (9), 092032 
 

 Conferences/meetings 
 
o Alreweny, A., Vandewalle, S., Meyers, J. (2024). Weakly constrained 4D-Var data assimilation in 

ABL using LES. ECCOMAS2024, Lisbon, Portugal, 3-7 Jun 2024 
 

o Alreweny, A., Vandewalle, S., Meyers, J. (2023). Preconditioned 4D-VAR data-assimilation of 
turbulent flow fields with the aid of atmospheric analytical models. UNCECOMP2023, Athens, 
Greece, 12-14 Jun 2023 

 
o Alreweny, A., Vandewalle, S., Meyers, J. (2023). LES-based reconstruction of turbulence in the 

ABL using Mann spectral-tensor regularization. Wind Energy Science Conference 2023, Glasgow, 
UK, 23-26 May 2023 
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